
Algorithm

LAST MINUTE 
NOTES



Algorithm – Input, Output, Definiteness, Finiteness, Effectiveness

Analyze an algorithm

1) Worst Case Analysis (Usually Done) - calculate upper bound on running time of an algorithm (a 
situation where algorithm takes maximum time) 

f(n) ≤ c.g(n)

2) Average Case Analysis (Sometimes done) - we take all possible inputs and calculate computing 
time for all of the inputs.

3) Best Case Analysis - calculate lower bound on running time of an algorithm.

Best Case − Minimum time required for program execution.

Average Case − Average time required for program execution.

Worst Case − Maximum time required for program execution.

https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/


Asymptotic Notation

•Ο Notation - The notation Ο(n) is the formal way to 
express the upper bound of an algorithm's running time. It 
measures the worst case time complexity or the longest 
amount of time an algorithm can possibly take to complete.

•Ω Notation - The notation Ω(n) is the formal way to 
express the lower bound of an algorithm's running time. It 
measures the best case time complexity or the best 
amount of time an algorithm can possibly take to complete.

•θ Notation - The notation θ(n) is the formal way to express 
both the lower bound and the upper bound of an 
algorithm's running time.

f(n) ≤ c.g(n) 

g(n) ≤ c.f(n) 

θ(f(n)) = { g(n) if and only if g(n) = 

Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0}



constant Ο(1)

logarithmic Ο(log n)

linear Ο(n)

n log n Ο(n log n)

quadratic Ο(n
2
)

cubic Ο(n
3
)

polynomial n
Ο(1)

exponential 2
Ο(n)















Trees

Binary Search Tree

There must be no duplicate nodes.

AVL Tree- self-balancing Binary Search Tree (BST) , where the difference 
between heights of left and right subtrees cannot be more than one for all 
nodes.

B-tree



Graph



Graph

Algorithm Adjacency Matrix Adjacency List

DFS O(V * V) O(V+E)

BFS O(V * V) O(V+E)

Dijkstra O(V^2) O(E log V)

Prim’s

Kruskal’s



Graph



Algorithm Worst Case
Average 

Case
Best Case

Selection Θ(n2) Θ(n2) Θ(n2)

Bubble Θ(n2) Θ(n2) Θ(n2)

Insertion Θ(n2) Θ(n2) Θ(n)

Quick Θ(n2) Θ(nlgn) Θ(nlgn)

Merge Θ(nlgn) Θ(nlgn) Θ(nlgn)

Heap Θ(nlgn) Θ(nlgn) Θ(nlgn)

Algorithm
Worst 

Case

Average 

Case
Best Case

Linear 

Search
Θ(n) Θ(n) Θ(1)

Binary 

Search
O (logn) O (logn) O (1)

SEARCHING

Algorithm Worst Case
Average 

Case
Best Case

Topological

sorting
O(V+E)

Θ(n2) Θ(n2) Θ(n2)

Θ(n2) Θ(n2) Θ(n)

Θ(n2) Θ(nlgn) Θ(nlgn)

Θ(nlgn) Θ(nlgn) Θ(nlgn)

Θ(nlgn) Θ(nlgn) Θ(nlgn)

https://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
http://quiz.geeksforgeeks.org/binary-search/


Divide & Conquer Recurrence Relation Time Complexity

Binary Search O(nLogn)

Quick Sort O(nLogn)

Merge Sort O(nLogn)

Closet pair of points O(nLogn)

DAC
1.Divide: Break the given problem into subproblems of same 
type.
2.Conquer: Recursively solve these subproblems
3.Combine: Appropriately combine the answers

1) Binary Search is a searching algorithm. In each step, the 
algorithm compares the input element x with the value of the 
middle element in array. If the values match, return the index of 
middle. Otherwise, if x is less than the middle element, then 
the algorithm recurs for left side of middle element, else recurs 
for right side of middle element

2) Quicksort is a sorting algorithm. The algorithm picks a pivot 
element, rearranges the array elements in such a way that all 
elements smaller than the picked pivot element move to left 
side of pivot, and all greater elements move to right side. 
Finally, the algorithm recursively sorts the subarrays on left and 
right of pivot element.

3) Merge Sort is also a sorting algorithm. The 
algorithm divides the array in two halves, 
recursively sorts them and finally merges the two 
sorted halves.

4) Closest Pair of Points The problem is to find the closest pair 
of points in a set of points in x-y plane. The problem can be 
solved in O(n^2) time by calculating distances of every pair of 
points and comparing the distances to find the minimum.

http://quiz.geeksforgeeks.org/binary-search/
http://quiz.geeksforgeeks.org/quick-sort/
http://quiz.geeksforgeeks.org/merge-sort/
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem


Greedy Approach Recurrence Relation Time Complexity

Kruskal’s O(nLogn)

Prim’s O(nLogn)

Dijkstra O(nLogn)

Huffman Coding O(nLogn)

Greedy is an algorithmic paradigm that builds up a solution 
piece by piece, always choosing the next piece that offers the 
most obvious and immediate benefit. Greedy algorithms are 
used for optimization problems. An optimization problem can 
be solved using Greedy if the problem has the following 
property: At every step, we can make a choice that looks best at 
the moment, and we get the optimal solution of the complete 
problem.

1) Kruskal’s Minimum Spanning Tree (MST): In Kruskal’s 
algorithm, we create a MST by picking edges one by one. The 
Greedy Choice is to pick the smallest weight edge that doesn’t 
cause a cycle in the MST constructed so far.

2) Prim’s Minimum Spanning Tree: In Prim’s algorithm also, we 
create a MST by picking edges one by one. We maintain two 
sets: set of the vertices already included in MST and the set of 
the vertices not yet included. The Greedy Choice is to pick the 
smallest weight edge that connects the two sets.

3) Dijkstra’s Shortest Path: The Dijkstra’s algorithm is very 
similar to Prim’s algorithm. The shortest path tree is built up, 
edge by edge. We maintain two sets: set of the vertices already 
included in the tree and the set of the vertices not yet included. 
The Greedy Choice is to pick the edge that connects the two 
sets and is on the smallest weight path from source to the set 
that contains not yet included vertices.

4) Huffman Coding: Huffman Coding is a loss-less compression 
technique. It assigns variable length bit codes to different 
characters. The Greedy Choice is to assign least bit length code 
to the most frequent character.

https://www.geeksforgeeks.org/greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/
https://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/
https://www.geeksforgeeks.org/greedy-algorithms-set-3-huffman-coding/


Greedy algorithm

•Travelling Salesman Problem

•Prim's Minimal Spanning Tree Algorithm

•Kruskal's Minimal Spanning Tree Algorithm

•Dijkstra's Minimal Spanning Tree Algorithm

•Graph - Map Colouring

•Graph - Vertex Cover

•Knapsack Problem

•Job Scheduling Problem

•DAC

•Merge Sort

•Quick Sort

•Binary Search

•Strassen's Matrix Multiplication

•Closest pair (points)

•DP

•Fibonacci number series

•Knapsack problem

•Tower of Hanoi

•All pair shortest path by Floyd-Warshall

•Shortest path by Dijkstra

•Project scheduling



Dynamic Programming is an algorithmic paradigm that solves a 
given complex problem by breaking it into subproblems and 
stores the results of subproblems to avoid computing the same 
results again

Dynamic Programming Recurrence Relation Time Complexity

Floyd warshall O(nLogn)

Bellman Ford O(nLogn)

Longest Common 

Subsequence

O(nLogn)

O(nLogn)

1.Overlapping Subproblems: Dynamic Programming is mainly 
used when solutions of same subproblems are needed again 
and again. In dynamic programming, computed solutions to 
subproblems are stored in a table so that these don’t have to 
be recomputed.

2.Optimal Substructure: A given problems has Optimal 
Substructure Property if optimal solution of the given problem 
can be obtained by using optimal solutions of its subproblems.



BackTracking

Backtracking is an algorithmic paradigm that tries different 
solutions until finds a solution that “works”. Backtracking works 
in an incremental way to attack problems. Typically, we start 
from an empty solution vector and one by one add items 
.Meaning of item varies from problem to problem. 
Example: Hamiltonian Cycle

https://www.geeksforgeeks.org/backtracking-set-7-hamiltonian-cycle/


Search

Interpolation search is an improved variant of binary 

search. algorithm works on the probing position of the 

required value. For this algorithm to work properly, the 

data collection should be in a sorted form and equally 

distributed. Ο(log (log n))


