
HASHING IN
DATA STRUCTURE

By: Rashmi Prabha

◦ Hashing is a technique or process of mapping keys, values into the hash table by using a hash function.
It is done for faster access to elements. The efficiency of mapping depends on the efficiency of the hash
function used.

◦ Hash Table

◦ Methods of Hash table

◦ Collision Handle

◦ Chaining

◦ Open Addressing

◦ Hash Function

example

◦ Suppose we want to store Employee details:-

1.Insert a phone number and corresponding information.

2.Search a phone number and fetch the information.

3.Delete a phone number and related information.

◦ Which data structure can be used for storing above values:-

1.Array of phone numbers and records.

2.Linked List of phone numbers and records.

3.Balanced binary search tree with phone numbers as keys.

4.Direct Access Table.

◦ For arrays and linked lists, we need to search in a linear fashion, which can be costly in practice. If we
use arrays and keep the data sorted, then a phone number can be searched in O(Logn) time using
Binary Search, but insert and delete operations become costly as we have to maintain sorted order.

◦ With balanced binary search tree, we get moderate search, insert and delete times. All of these
operations can be guaranteed to be in O(Logn) time.

◦ Hashing is an improvement over Direct Access Table. The idea is to use hash function that converts a
given phone number or any other key to a smaller number and uses the small number as index in a table
called hash table.

◦ Hash Function - a hash function maps a big number or string to a small integer that can be used as index
in hash table.

◦ A good hash function should have following properties
1) Efficiently computable.
2) Should uniformly distribute the keys (Each table position equally likely for each key)

◦ Hash Table - An array that stores pointers to records corresponding to a given phone number. An entry
in hash table is NIL if no existing phone number has hash function value equal to the index for the entry.

◦ What is collision?

◦ two keys result in the same value

◦ How to handle collision?

◦ Chaining: The idea is to make each cell of hash table point to a linked list of records that have same hash
function value. Chaining is simple, but requires additional memory outside the table.

◦ Open Addressing: In open addressing, all elements are stored in the hash table itself. Each table entry
contains either a record or NIL. When searching for an element, we one by one examine table slots until
the desired element is found or it is clear that the element is not in the table.

Example - Separate chaining

◦ Let us consider a simple hash function as “key mod 7” and sequence of keys as 50, 700, 76, 85, 92, 73,
101.

◦ Advantages:
1) Simple to implement.
2) Hash table never fills up, we can always add more elements to the chain.
3) Less sensitive to the hash function or load factors.
4) It is mostly used when it is unknown how many and how frequently keys may be inserted or deleted

◦ Disadvantages:
1) Cache performance of chaining is not good as keys are stored using a linked list. Open addressing
provides better cache performance as everything is stored in the same table.
2) Wastage of Space (Some Parts of hash table are never used)
3) If the chain becomes long, then search time can become O(n) in the worst case.
4) Uses extra space for links.

◦ Time complexity of search insert and delete in Hash hunction (Linear probing) is O(1) if

α is O(1)

◦ Challenges in Linear Probing :

1.Primary Clustering: One of the problems with linear probing is Primary clustering, many consecutive
elements form groups and it starts taking time to find a free slot or to search for an element.

2.Secondary Clustering: Secondary clustering is less severe, two records only have the same collision
chain (Probe Sequence) if their initial position is the same.

•Dynamic Sized Arrays (Vectors in C++, Array List in Java, list in Python)
• Search: O(l) where l = length of array
• Delete: O(l)
• Insert: O(l)
• Cache friendly

Data Structures For Storing Chains:
•Linked lists

• Search: O(l) where l = length of linked list
• Delete: O(l)
• Insert: O(l)
• Not cache friendly

•Self Balancing BST (AVL Trees, Red Black Trees)
• Search: O(log(l))
• Delete: O(log(l))
• Insert: O(l)
• Not cache friendly
• Java 8 onwards use this for HashMap

Open Addressing

◦ In Open Addressing, all elements are stored in the hash table itself. So at any point, the size of the table
must be greater than or equal to the total number of keys (Note that we can increase table size by
copying old data if needed).

◦ Insert(k): Keep probing until an empty slot is found. Once an empty slot is found, insert k.

◦ Search(k): Keep probing until slot’s key doesn’t become equal to k or an empty slot is reached.

◦ Quadratic Hashing

◦ Double Hashing - (firstHash(key) + i * secondHash(key)) % sizeOfTable

S.No. Separate Chaining Open Addressing

1. Chaining is Simpler to implement.
Open Addressing requires more

computation.

2.
In chaining, Hash table never fills up, we can always add

more elements to chain.

In open addressing, table may

become full.

3.
Chaining is Less sensitive to the hash function or load

factors.

Open addressing requires extra

care to avoid clustering and load

factor.

4.
Chaining is mostly used when it is unknown how many

and how frequently keys may be inserted or deleted.

Open addressing is used when the

frequency and number of keys is

known.

5.
Cache performance of chaining is not good as keys are

stored using linked list.

Open addressing provides better

cache performance as everything is

stored in the same table.

6.
Wastage of Space (Some Parts of hash table in chaining

are never used).

In Open addressing, a slot can be

used even if an input doesn’t map

to it.

7. Chaining uses extra space for links. No links in Open addressing

Double Hashing

◦ Double hashing is a collision resolving technique in Open Addressed Hash tables. Double hashing uses
the idea of applying a second hash function to key when a collision occurs.

◦ Double hashing can be done using :
(hash1(key) + i * hash2(key)) % TABLE_SIZE
Here hash1() and hash2() are hash functions and TABLE_SIZE
is size of hash table.

Thank you

Revise each concept properly

All the best

By: Rashmi Prabha

