匀combinecs

Stack evaluation
dream

© COMBINECS THE EXTRA STEP co +91-7666980624

Q1) Which of the following is the application of Stack Data structure.

1. Managing function calls
2. Stock span problem
3. Arithmetic expression evaluation
4. All
$+2$
Q1) Which of the following is the application of Stack Data structure. nus/ hos
a) keyword fifo
O.S point
5. Managing function calls

FILO
2. Stock span problem
3. Arithmetic expression evaluation

DHS
BF S
4. All

Q2) Which of the following is true about linked list implementation of stack?
a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from end.
b) In push operation, if new nodes are inserted at the end of linked list, then in pop operation, nodes must be removed from the beginning.
c) Both
d) None

Concept
stir
2) list

Q2) Which of the following is true about linked list implementation of stack?
a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from end.
b) In push operation, if new nodes are inserted at the end of linked list, then in pop operation, nodes must be removed from the beginning. fol
c) Both
d) Ane

To keep the Last In First Out order, a stack can be implemented using linked list in two ways: a) In push operation, if new nodes are inserted at the beginning of linked list, then in pop operation, nodes must be removed from beginning. b) In push operation, if new nodes are inserted at the end of linked list, then in pop operation, nodes must be removed from end.

Repetitive
evaluation
Qu) 8×3 み人23**51 * -

$9 / 8=1$

$5 \quad 1 * 5$

Note that ${ }^{\wedge}$ is the exponentiation operator. The top two elements of the stack after the first ${ }^{*}$ is evaluated are:
(a) 6,1
b) 5,7
c) 3,2
d) 1,5
$\left\lvert\, \begin{aligned} & 5 \\ & 7\end{aligned}-75=2\right.$

Q3) $823^{\wedge} / 23^{*}+51^{*}$ -
Note that ${ }^{\wedge}$ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:
a) 6,1
b) 5,7
c) 3,2
d) 1,5
evaluative exp.
$57=-2$
precedence
2
\longrightarrow Right $=$ left
Q4) Assume that the operators,,$+- x$ are left associative and $\widehat{\Lambda}$ is right associative.

Traverse al The Order of precedence (from highest to
$2+3$
$23 t$
tina lowest) is $\wedge, x,+,-$ The postfix expression $+23$
288c. corresponding to the infix expression $a+b$

1. $\operatorname{abc} \times+\operatorname{def} \wedge \wedge$ -
2. $a b c \times+d \wedge^{\wedge} f^{\wedge}$ -

$$
a+b * c-\overline{d^{n}} e^{n} f
$$

3. $a b+c \times d-e^{\wedge} f^{\wedge}$
4. $-+a \times b c^{\wedge \wedge} \operatorname{def}$

Q4) Assume that the operators,,$+- \times$ are left associative and ${ }^{\wedge}$ is right associative. The order of precedence (from highest to lowest) is $\wedge, x,+,-$. The postfix expression corresponding to the infix expression $a+b$ $x c-d^{\wedge} e^{\wedge} f$ is....

1. abc $\times+\operatorname{def} \wedge \wedge$ -
2. $a b c \times+d e \wedge^{\wedge} f^{\wedge}-$
3. $a b+c \times d-e^{\wedge} f^{\wedge}$
4. $-+a \times b c \wedge \wedge \operatorname{def}$

Q5) Prefix and postfix evaluation can be done using a

1. Double stack
2. single stack
3. Both
4. None

Q5) Prefix and postfix evaluation can be done using a

1. Double stack
2. Single stack
3. Both
4. None

Q6) Evaluate expression : $1028^{*}+3$
losec
a) 22
b) 23
c) 24
d) None

$$
\frac{8}{\frac{2}{10}}
$$

$\left|\frac{16}{10}\right|+\left|\frac{3}{26}\right|_{\underline{26-3}}$

Q6) Evaluate expression : 10 $28^{*}+3$
a) 22
b) 23
c) 24
d) None

Q7) The result evaluating the postfix
expression $105+606 / * 8$ - is
(gate 2015)
a) 284
b) 213
c) 142
d) 71

Q7) The result evaluating the postfix expression $105+606 / * 8$ - is (gate 2015)
a) 284
b) 213
c) 142

$$
\left\lfloor\frac{5}{10}\right\rfloor+
$$

d) 71

Q8) Evaluate : 52 * 332 + * +
a) 15
b) 25
c) 30
d) 150

Q8) Evaluate : 52 * $332+$ * +
a) 15
b) 25
c) 30
d) 150
search Q9) Time complexity of Stack using linked list?
a) $O(1)$ for insertion and $O(n)$ for deletion
b) $\mathrm{O}(1)$ for insertion and $\mathrm{O}(1)$ for deletion
c) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(1)$ for deletion
d) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion
dynamic Q9) Time complexity of Stack using linked list?
a) $O(1)$ for insertion and $O(n)$ for deletion
b) $O(1)$ for insertion and $O(1)$ for deletion
c) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(1)$ for deletion
d) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion

Q10) Time complexity of Stack using array?
a) $\mathrm{O}(1)$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion
b) $O(1)$ for insertion and $O(1)$ for deletion
c) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(1)$ for deletion
d) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion

Trick
Stack
Q10) Time complexity of Stack using array?
a) $\mathrm{O}(1)$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion
b) $\mathrm{O}(1)$ for insertion and $\mathrm{O}(1)$ for deletion
c) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(1)$ for deletion
d) $\mathrm{O}(\mathrm{n})$ for insertion and $\mathrm{O}(\mathrm{n})$ for deletion

Q11) Consider $\underline{\underline{n}}$ elements that are equally distributed
$k=\mathbb{R}^{2}$ in k stacks. In each stack, elements of it are arranged in ascending order (min is at the top in each of the stack and then increasing downwards). Given a queue of size n in which we have to put all elements in increasīng order. What will be the time complexity of the best known algorithm?
a) $O(n \log k)$

b) $O(n k)$
c) $\mathrm{O}(\mathrm{n} 2)$
d) $\mathrm{O}(\mathrm{k} 2)$

Q11) Consider n elements that are equally distributed in k stacks. In each stack, elements of it are arranged in ascending order (min is at the top in each of the stack and then increasing downwards). Given a queue of size n in which we have to put all n elements in increasing order. What will be the time complexity of the best known algorithm?
a) $O(n \log k)$
b) $O(n k)$
c) $\mathrm{O}(\mathrm{n} 2)$

d) $\mathrm{O}(\mathrm{k} 2)$

In nlogk it can be done by creating amin heap faze k and adding all the top - elements of all the stacks. After extracting the min , add the next element from the stack from which we have got our 1st minimum. Time Complexity $=\mathrm{O}(\mathrm{k})($ For Creating Heap of size $k)+(n-$ k) $\log \mathrm{k}$ (Insertions into the heap).
i. First-in-first out types of computations are efficiently supported by STACKS.
ii. Implementing LISTS on linked lists is more efficient than implementing LISTS on an array for almost all the basic LIST operations.
iii. Implementing QUEUES on a circular array is more efficient than implementing QUEUES on a linear array with two indices.
iv. Last-in-first-out type of computations are efficiently supported by QUEUES.
a) $2 \& 3$ only
b) $1 \& 2$ only
c) 3,4 only
d) 2,4 only

Q12) which is/are true statements
i. First-in firstout types of computations are efficiently supported by STACKS. False
ii. Implementing LISTS on linked lists is more efficient than implementing LISTS on an array for almost all the basic LIST operations.
iii. Implementing QUEUES on a circular array is more efficient than implementing QUEUES on a linear array with two indices.
foltik. Last-in-first-out type of computations are efficiently supported by QUEUES.

a) $\mathbf{2 \&} \mathbf{3}$ only
b) $X \& 2$ only
c) 3 , 3 only
d) 2,3 only

Q13) Which of the following permutation can be obtained in the same order using a stack assuming that input is the sequence $5,6,7,8,9$ in that order? (ISRO 2017)
a) $7,8,9,5,6$
b) $5,9,6,7,8$
c) $7,8,9,6,5$
d) $9,8,7,5,6$

Q13) Which of the following permutation can be obtained in the same order using a stack assuming that input is the sequence $5,6,7,8,9$ in that order? (ISRO 2017) pop \rightarrow Top
a) $(7,8,9,5,61$ min b) (5) $9,6,7,8$
c) $7,8,9,6,5$
d) $988,7,5,6$
(C)

7

Jean =Q14) The minimum number of stacks needed to implement a queue is..
(ISRO 2017)
a) 1
b) 2
c) 3
d) 4

Q Sin^{n} no. of Queue needed To implement stack =?

Q14) The minimum number of stacks needed to implement a queue is..
(ISRO 2017)
a) 1
b) 2
c) 3
d) 4
15)

2sec Q15) The best data structure to check whether an arithmetic expression has balanced parenthesis is a ..(ISRO 2017)

1. Queue
2. Tree
3. List
4. Stack

Q15) The best data structure to check whether an arithmetic expression has balanced parenthesis is a ..(ISRO 2017)

1. Queue
2. Tree
3. List
4. Stack

Q16) The seven elements A, B, C, D, E, F and G are pushed onto a stack in reverse order, i.e., starting from G. The stack is popped five times and each element is inserted into a queue. Two elements are deleted from the queue and pushed back onto the stack. Now, one element is popped from the stack. The popped item is \qquad . (NET 2017) Recont

1. A
2. B
3. F
4. G

Q16) The seven elements A, B, C, D, E, F and G are pushed onto a stack in reverse order, i.e., starting from G . The stack is popped five times and each element is inserted into a queue. Two elements are deleted from the queue and pushed back onto the stack. Now, one element is popped from the stack. The popped item is \qquad . (NET 2017)

1. A
2. F
3. G

Q17) If the sequence of operations - push (1), push (2), pop, push (1), push (2), pop, pop, pop, push (2), pop are performed on a stack, the sequence of popped out values..(ISRO 2015)
a) $2,2,1,2,2$
b) $2,2,1,1,2$
c) $2,1,2,2,1$
d) $2,1,2,2,2$

Q17) If the sequence of operations - push (1), push (2), pop, push (1), push (2), pop, pop, pop, push (2), pop are performed on a stack, the sequence of popped out values..(ISRO 2015)
a) $2,2,1,2,2$

カ) 2,2,1,1,2
c) $2,1,2,2,1$
d) $2,1,2,2,2$

Q18) The five items: A, B, C, D, and E are pushed in a stack, one after other starting from A. The stack

2015
alternative is popped four items and each element is inserted in a queue. The two elements are deleted from the queue and pushed back on the stack. Now one item is popped from the stack. The popped item is. \qquad
a) A
b) B
$\left.\begin{array}{ll}\text { c) } & C \vee \\ \text { d) } & D \vee\end{array}\right]$ aoofla 1 Reins. 80%

$$
2016 \rightarrow 2018 \rightarrow 2020
$$

2021

Q18) The five items: A, B, C, D, and E are pushed in a stack, one after other starting from A. The stack is popped four items and each element is inserted in a queue. The two elements are deleted from the queue and pushed back on the stack. Now one item is popped from the stack. The popped item is........(ISRO 2015)
a) A
b) B
c) C
d) $D \backsim$
z Q19) Consider the following operations performed on a stack of size 5 : Push (a); Pop() ; Push(b); Push(c); Pop(); Push(d); Pop();Pop(); Push (e) isRo 245 Which of the following statements is correct?

1. Underflow occurs
2. Stack operations are performed smoothly
3. Overflow occurs
4. None

Q19) Consider the following operations performed on a stack of (1225) Push at $f(0)$
 Po pl): Po up) Push (e) pop \quad Pc) Which of the following statements is correct?

1. Underflow occurs \& Stack empty, trying POP $p(e)$ Stack operations are performed smoothly
2. Overflow occurs $\rightarrow 6$ elements
3. None

Size

-Q20) Stack A has the entries a, b, c (with a on top). Stack B is empty. An entry popped out of stack A can be printed immediately or pushed to stack B. An entry popped out of the stack B can be only be printed. In this arrangement, which of the following permutations of a, b, c are not possible?

1. BA C

2. $B C A$
3. $C A B$
4. $A B C$

Q20) Stack A has the entries b, c (with (a)on top). Stack B is empty. An entry popped out of stack A can be printed immediately or pushed to stack B. An entry popped out of the stack B can be only be printed. In this arrangement, which of the following permutations of a, b, c are not possible?

1. (B) $A C$
2. $C A B$
3. $A B C=$

(1)

$b a c$ $b \subset a$

Q21) Convert the following infix expression into its equivalent post fix expression

Tree DSA

$$
\left(A+B^{\wedge} D\right) /(E-F)+G(N E T 2014)
$$

2 sec

1. $A B D^{\wedge}+E F-/ G+$
2. $A B D+\wedge E F-/ G+$
3. $\mathrm{ABD}+\wedge \mathrm{EF} /-\mathrm{G}+$
4. $A B D^{\wedge}+E F /-G+$

BU A
Semination sec

$$
\begin{aligned}
& \text { dimination } \\
& \left(A+B^{n} D\right) \mid(E-F)+G \\
&
\end{aligned}
$$

Q21) Convert the following infix expression into its equivalent post fix expression

$$
\left(A+\underset{A B D}{B D^{\wedge} D}\right) /(E-F)+G(\text { NET 2014 })
$$

1. $\mathrm{ABD}^{\wedge}+E-/ \mathrm{G}+$
2. $A B D E E=A+$
3. $\mathrm{ABD}+\wedge \mathrm{EF} /-\mathrm{G}+$
A. $A B D^{\wedge}+E F-G+$

CQ22)
Push(54);push(52);pop();push(55);push(62);s=pop(); enqueue(21);enqueue(24);dequeue();enqueue(28);enqueu e(32);q=dequeue();

The value of $\mathrm{S}+\mathrm{Q}$? (GATE 2021)
a) 68
b) 86
c) 24
d) 94

Ouiclly, hiory
(1) double confinm \quad 100\% Q22) $\quad \operatorname{Push}(54) ; \operatorname{push}(52) ; \operatorname{pp}() ; \operatorname{push}(55) ; \operatorname{push}(62) ; \mathrm{s}=\operatorname{pop()}$;
(2) net enqueue(21);enqueue(24); dequere();enqueue(28);enqueu
(5) his $e(32) ; q=$ dequeue($)$;
overflow The value of $\mathrm{S}+\mathrm{Q}$? (GATE 2021)
$30 \quad 62+24$
a) 68

万) 86
c) 24
d) 94

52

$\frac{55}{54}$

Follow us on Social media：
YouTube ：https：／／www．youtube．com／c／CombineCSTheExtraStep
8．Facebook ：https：／／www．facebook．com／groups／combinecs
ỡ Instagram ：https：／／www．instagram．com／combinecs／
Telegram Group \quad https：／／t．me／RashmiCCS
Telegram Channel ：https：／／t．me／combinecs
手 Join our WhatsApp group for（NET／SET／GATE）： https：／／chat．whatsapp．com／GruovhRvste1nL8L2X1YQ3

Join our WhatsApp group for（JOB Notifications）： https：／／chat．whatsapp．com／ExM4CZ2ZKxzEgPvSfOXNFb

Join our WhatsApp group for（Training \＆Placements）： https：／／chat．whatsapp．com／EB5umdja3BGJQijhxjEaij

For any query regarding notes，pdf，feedback，suggestions Mail us：combinecs2020＠gmail．com

卷 For all our latest courses launched
visit：（3）combinecs．com

＂Effort Never Dies＂
目 Like｜｜Share｜｜Comment｜｜Subscribe

Thank you

Post your doubts in comment section.
Stay subscribed for all updates.

